Civil & Construction Engineering

COLLEGE OF ENGINEERING

Emerging Surveying and Mapping Technologies

Christopher Parrish

Oregon State University, CCE Geomatics

OSBEELS Symposium

September 14, 2018

Salem, Oregon

"Boots-on-the-ground" field

surveys

Desired improvements

Can't be done, due to inherent tradeoffs between these goals!

Alternative: moving survey platform

Survey speed

- Nearly certain to cover more ground quickly
- What's the tradeoff? Accuracy
- Objective function:

```
\min\{cost + time\}
subject to {accuracy \leq spec}
```

Inherent Tradeoffs

Emerging tools & technologies

- Autonomous/unmanned vehicles
 - UAS, ASVs, ROVs
 - UAS-based lidar and Structure from Motion (SfM) photogrammetry
- Direct georeferencing: GNSS-aided INS
 - Smaller, cheaper, lighter carrier-base based GNSS and MEMS INS
- New advances in airborne and mobile lidar
 - Single photon and Geiger mode lidar
 - Topographic-bathymetric lidar
 - Satellite-based lidar
- How do we quantitatively assess, compare, and optimize for our operational use?

UAS + SfM Photogrammetry

- SfM
 - Relatively new photogrammetric approach
 - Leverages advanced image matching algorithms from the field of computer vision
 - Can work with a wide range of viewing geometries and consumer-grade cameras
 - Well suited to UAV imagery!
 - Highly automated, easy to use software

Empirical accuracy assessments, per ASPRS Positional Accuracy Standards for Digital Geospatial Data & FGDC NSSDA

RTK GNSS

Postprocessed static GNSS

$$RMSE_{z} = \sqrt{\frac{\sum \left(z_{datai} - z_{checki}\right)^{2}}{n}}$$

 $Accuracy_{z} = 1.96 (RMSE_{z})$

simUAS

Slocum, R.K., and C.E., Parrish, 2017. Simulated Imagery Rendering Workflow for UAS-Based Photogrammetric 3D Reconstruction Accuracy Assessments. *Remote Sensing*, Vol. 9, No. 4:396.

1. Generate Model

2. Texture Model

3. Add Lighting to Scene

4. Add Cameras

5. Render Imagery

			Stal ?							
IMG_0001.png	IMG_0002.png	IMG_0003.png	IMG_0004.png	IMG_0005.png	IMG_0006.png	IMG_0007.png	IMG_0008.png	IMG_0009.png	IMG_0010.png	IMG_0011.png
Stree .									1.4	
IMG_0012.png	IMG_0013.png	IMG_0014.png	IMG_0015.png	IMG_0016.png	IMG_0017.png	IMG_0018.png	IMG_0019.png	IMG_0020.png	IMG_0021.png	IMG_0022.png
Te?	3			123	and the second			A P	de la	12m
IMG_0023.png	IMG_0024.png	IMG_0025.png	IMG_0026.png	IMG_0027.png	IMG_0028.png	IMG_0029.png	IMG_0030.png	IMG_0031.png	IMG_0032.png	IMG_0033.png
		-								and a
IMG_0034.png	IMG_0035.png	IMG_0036.png	IMG_0037.png	IMG_0038.png	IMG_0039.png	IMG_0040.png	IMG_0041.png	IMG_0042.png	IMG_0043.png	IMG_0044.png
IMG 0045.png	IMG 0046.ppg	IMG 0047,png	IMG 0048.png	IMG 0049.png	IMG 0050.png	IMG 0051.png	IMG 0052.png	IMG 0053.png	IMG 0054.png	IMG 0055.png
			and the second second		1 Carlos and a carlos		A A A A A A A A A A A A A A A A A A A		A THE PARTY AND	
	. 70					a lite			ST. H	
IMG_0056.png	IMG_0057.png	IMG_0058.png	IMG_0059.png	IMG_0060.png	IMG_0061.png	IMG_0062.png	IMG_0063.png	IMG_0064.png	IMG_0065.png	IMG_0066.png
1				A N				A CANANA		- And
IMG_0067.png	IMG_0068.png	IMG_0069.png	IMG_0070.png	IMG_0071.png	IMG_0072.png	IMG_0073.png	IMG_0074.png	IMG_0075.png	IMG_0076.png	IMG_0077.png

6. Postprocess Imagery

- Lens Distortion
- Vignetting
- Gaussian Noise
- Salt/Pepper Noise
- Gaussian Blur

7. Process Using Commercial SfM

8. Generate Sparse Pointcloud

9. Generate Dense Pointcloud

10. Compare Dense Pointcloud to Mesh

11. Compute Cloud to Mesh Distances

Qualitative Results

Lower Photoscan Dense Quality = round corners

Quantitative Results

Compute error by comparing to groundtruth mesh

Another option: Direct Georeferencing

DG for UAS-lidar

Topo-Bathy Lidar Uncertainty Modeling

Subaerial Uncertainty

Subaqueous Uncertainty

Combining component uncertainties

Photon Elevations along MABEL Trackline (Channel 11)

Forfinski-Sarkozi, N.A., and C.E. Parrish, 2016. Analysis of MABEL Bathymetry in Keweenaw Bay and Implications for ICESat-2 ATLAS. *Remote Sensing*, Vol. 8, No. 9.

Comparison with Reference Bathymetry

Unsolved Challenges

- When more data becomes too much data
 - Big data, AI/machine learning, cloud processing
 - Data -> information -> insight
- Linking empirical accuracy assessments and modeled uncertainties
- Sensor/technology-neutral assessment methods
- Standards, guidelines, and best practices!!
 - In an era of accelerating growth in new mobile/airborne surveying and mapping technologies, need ways of dismissing hype and ensuring appropriate technology use to ensure specs of job are met

Acknowledgements

- Grad Students
 - Richie Slocum
 - Chase Simpson
 - Nick Forfinski-Sarkozi
 - Matt Gillins
- Postdocs
 - Jaehoon Jung
 - Firat Eren (UNH)

Acknowledgements

- This work was supported by the following grants:
 - NASA Research Opportunities in Space and Earth Sciences (ROSES): Grant # NNX15AQ22G: "ICESat-2 Algorithm Development for the Coastal Zone"
 - Department of the Interior, USGS: AmericaView Grant # G14AP00002: "OregonView"
 - NOAA CIMRS Grant # NA110AR4320091A:
 - "Seafloor Reflectance Mapping from EAARL-B Topobathymetric Lidar Data in the U.S. Virgin Islands" (2015)
 - "Enhanced EAARL-B Lidar Processing and Waveform Analysis for the U.S. Virgin Islands" (2016)
 - Optimizing UAS Imagery Acquisition and Processing for Shallow Bathymetric Mapping (2017-2018)
 - ODOT, Agreement 30530, WO 16-05: "Eyes in the Sky: Bridge Inspections with Unmanned Aerial Vehicles"
 - PacTrans UTC Region 10: 69A3551747110-UWSC10003: "An Airborne Lidar Scanning and Deep Learning System for Real-time Event Extraction and Control Policies in Urban Transportation Networks "

Oregon Department of Transportation

Christopher.Parrish@oregonstate.edu

